WIDEFIELD WATER & SANITATION DISTRICT 2020 Drinking Water Quality Report Covering Data for Calendar Year 2019

Public Water System ID: CO0121900

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact BRANDON BERNARD at 719-955-0548 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa_gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- •Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- •Inorganic contaminants: salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- •Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- •Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit wqcdcompliance.com/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121900, WIDEFIELD WSD, or by contacting BRANDON BERNARD at 719-955-0548. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
WELL W4 (Groundwater-Well) WELL W2 (Groundwater-Well) WELL W3 (Groundwater-Well) WELL C1 (Groundwater-Well) WELL C1 (Groundwater-Well) WELL W7 (Groundwater-Well) WELL E2 (Groundwater-Well) WELL C3 (Groundwater-Well) WELL C36 (Groundwater-Well) WEL JHW2 REDRILL (Groundwater-Well) WELL JHW4R (Groundwater-Well) WELL JHW4R (Groundwater-Well) WELL C2 REDRILL (Groundwater-Well) WELL W1 (Groundwater-Well) PURCHASED FROM CO0121275 (Groundwater-Consecutive Connection) PURCHASED FROM CO0121775 (Surface Water-Consecutive Connection) PURCHASED FROM CO0121300 (Surface Water-Consecutive Connection)	EPA Abandoned Contaminated Sites, EPA Hazardous Waste Generators, EPA Chemical Inventory/Storage Sites, EPA Toxic Release Inventory Sites, Permitted Wastewater Discharge Sites, Aboveground, Underground and Leaking Storage Tank Sites, Solid Waste Sites, Existing/Abandoned Mine Sites, Concentrated Animal Feeding Operations, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Fallow, Pasture / Hay, Septic Systems, Road Miles

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- **Average** (**x-bar**) Typical value.
- Range (R) Lowest value to the highest value.

- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Parts per trillion = Nanograms per liter (ppt = ng/L) One part per trillion is the equivalent of one grain of sand in an Olympic-size swimming pool, or a single penny in \$1,000,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

WIDEFIELD WSD routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2019 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

Disinfectants Sampled in the Distribution System

TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm <u>OR</u>

If sample size is less than 40 no more than 1 sample is below 0.2 ppm

Typical Sources: Water additive used to control microbes

Disinfectant Name	Time Period	Results	Number of Samples Below Level	Sample Size	TT Violation	MRDL
Chlorine	December, 2019	Lowest period percentage of samples meeting TT requirement: 100%	0	20	No	4.0 ppm

	Lead and Copper Sampled in the Distribution System										
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	90 th Percentile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources			
Copper	09/04/2019 to 12/04/2019	0.36	60	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Lead	03/08/2019 to 06/11/2019	2.6	60	ppb	15	1	No	Corrosion of household plumbing systems; Erosion of			

Lead and Copper Sampled in the Distribution System Contaminant Time 90th Sample Unit of 90th Sample 90th Typical Sources										
Contaminant Name	Period	Percentile	Sample Size	Measure	Percentile AL	Sample Sites Above AL	Percentile AL Exceedance	Typical Sources		
								natural deposits		
Copper	03/08/2019 to 06/11/2019	0.47	60	ppm	1.3	0	No	Corrosion of household plumbin systems; Erosion of natural deposits		
Lead	09/04/2019 to 12/04/2019	2.5	60	ppb	15	0	No	Corrosion of household plumbin systems; Erosion o natural deposits		

	Disinfection Byproducts Sampled in the Distribution System											
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Total Haloacetic Acids (HAA5)	2019	16.37	1.45 to 35.76	16	ppb	60	N/A	No	Byproduct of drinking water disinfection			
Total Trihalome thanes (TTHM)	2019	34.53	2.99 to 66.53	16	ppb	80	N/A	No	Byproduct of drinking water disinfection			

	Radionuclides Sampled at the Entry Point to the Distribution System											
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Gross Alpha	2019	1	0 to 2	2	pCi/L	15	0	No	Erosion of natural deposits			
Combined Uranium	2019	7.45	3.9 to 11	2	ppb	30	0	No	Erosion of natural deposits			
Gross Beta Particle Activity	2017	2	2 to 2	1	pCi/L*	50	0	No	Decay of natural and man-made deposits			

	Radionuclides Sampled at the Entry Point to the Distribution System										
Contaminant Name											

^{*}The MCL for Gross Beta Particle Activity is 4 mrem/year. Since there is no simple conversion between mrem/year and pCi/L EPA

considers 50 pCi/L to be the level of concern for Gross Beta Particle Beta Particle Activity.

	I	norganic C	ontaminants Sar	npled at th	e Entry Poi	nt to the	Distributio	on System	
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Barium	2019	0.04	0.01 to 0.08	4	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	2019	0.64	0.42 to 0.95	3	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate	2019	4.4	1.1 to 6.7	10	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrate-Nitrite	2019	1.7	1.7 to 1.7	1	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	2019	3.1	0 to 6.7	4	ppb	50	50	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines

Nitrate: <u>Nitrate in drinking water at levels above 10 ppm</u> is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

	Volatile Organic Contaminants Sampled at the Entry Point to the Distribution System											
Contaminant	Year	Average	Range	Sample	Unit of	MCL	MCLG	MCL	Typical Sources			
Name			Low – High	Size	Measure			Violation				
Tetrachloroethy	2019	0.24	0 to 1.1	7	ppb	5	0	No	Discharge from			
lene									factories and dry			
									cleaners			

Secondary Contaminants**

**Secondary standards are <u>non-enforceable</u> guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	Secondary Standard
Sodium	2019	93.67	43 to 190	3	ppm	N/A

Unregulated Contaminants***

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Perfluorobutanesulfonic acid	2019	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorheptanoic acid	2019	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorohexanesulfonic acid	2019	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorooctanesulfonic acid	2019	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorooctanoic acid	2019	Non-Detect	Non-Detect	12	Parts per Trillion
Bromochloroacetic acid	2019	3.96	0.562-5.34	7	Parts per Billion
Bromodichloroacetic acid	2019	4.06	0.5-5.87	7	Parts per Billion
Chlorodibromoacetic acid	2019	0.91	0.414-1.24	7	Parts per Billion
Dichloroacetic acid	2019	5.66	0.2-17.1	14	Parts per Billion
Monobromoacetic acid	2019	1.22	0.3-2	14	Parts per Billion
Total HAA5	2019	21.63	2-34.71	7	Parts per Billion
Trichloroacetic acid	2019	5.93	0.523-16.5	14	Parts per Billion

Unregulated Contaminants***

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
1-Butanol	2019	2.97	2-6.88	5	Parts per Billion
2-Methoxyethanol	2019	0.4	0.4	5	Parts per Billion
2-Propen-1-ol	2019	0.5	0.5	5	Parts per Billion
alpha-Hexachlorocyclohexane	2019	0.01	0.01	5	Parts per Billion
Butylated hydroxyanisole	2019	0.03	0.03	5	Parts per Billion
Chlorpyrifos	2019	0.03	0.03	5	Parts per Billion
cis-Permethrin	2019	0.011	0.011	5	Parts per Billion
Dimethipin	2019	0.2	0.2	5	Parts per Billion
Ethoprop	2019	0.03	0.03	5	Parts per Billion
Germanium	2019	0.3	0.3	5	Parts per Billion
Manganese	2019	36.27	0.4-149	5	Parts per Billion
Neodymium-143	2019	10000	10000	5	Centipoise
o-Toluidine	2019	0.007	0.007	5	Parts per Billion
Oxyfluorfen	2019	0.05	0.05	5	Parts per Billion
Permethrin, cis & trans	2019	0.04	0.04	5	Parts per Billion
Profenofos	2019	0.3	0.3	5	Parts per Billion
Quinolone	2019	0.02	0.02	5	Parts per Billion
Samarium-147	2019	10000	10000	5	Centipoise
Tebuconazole	2019	0.2	0.2	5	Parts per Billion
trans-Permethrin	2019	0.029	0.029	5	Parts per Billion
Tribufos	2019	0.07	0.07	5	Parts per Billion

^{***}More information about the contaminants that were included in UCMR monitoring can be found at: drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR. Learn more about the EPA UCMR at: epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/ground-water-and-drinking-water.

Violations, Significant Deficiencies, and Formal Enforcement Actions

No Violations or Formal Enforcement Actions

Fountain Valley Authority (PWSID # CO0121300) 2020 Water Quality Report Information for:

City of Fountain (PWSID # CO0121275)
Colorado Springs Utilities (PWSID # CO0121150)
Security Water District (PWSID # CO0121775)
Stratmoor Hills Water District (PWSID # CO0121800)
Widefield Water District (PWSID # CO0121900)

WATER SOURCE INFORMATION

Fountain Valley Authority treats surface water received from the Fryingpan-Arkansas Project. The Fryingpan-Arkansas Project is a system of pipes and tunnels that collects water in the Hunter-Fryingpan Wilderness Area near Aspen. Waters collected from the system are diverted to the Arkansas River, near Buena Vista, and then flows approximately 150 miles downstream to Pueblo Reservoir. From Pueblo Reservoir, the water travels through a pipeline to the water treatment plant.

COLORADO SOURCE WATER ASSESSMENT AND PROTECTION

The Colorado Department of Public Health and Environment may has provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit https://www.colorado.gov/cdphe/ccr.. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121300, FOUNTAIN VALLEY AUTHORITY or by contacting Colorado Springs Utilities Laboratory Services at 719-668-4560. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does not* mean that the contamination *has or will* occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below.

Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites
- Permitted Wastewater Discharge Sites
- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High-and-Low-Intensity Residential
- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest

- Septic Systems
- Oil/Gas Wells
- Road Miles

Fountain Valley Authority is dedicated to protecting our source water and ensuring quality treated water is delivered to our customers. The results of the source water assessment are not a reflection of our treated water quality received at the system connections, but rather a rating of the susceptibility of contamination under the guidelines of the Colorado SWAP program.

POSSIBLE WATER CONTAMINANTS

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting https://www.epa.gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants: salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

FLUORIDE INFORMATION

Fluoride is a compound found naturally in many places, including soil, food, plants, animals and the human body. It is also found naturally in Fountain Valley Authority's water source. Fountain Valley Authority does not add additional fluoride to the treated water. Any fluoride in the treated water results from what occurs naturally in the source water.

LEAD INFORMATION

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

DEFINITIONS

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no
 known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
 contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- **Gross Alpha (No Abbreviation)** Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- Picocuries per liter (pCi/L) Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- **Level 1 Assessment** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

TABLE OF DETECTED CONTAMINANTS

Fountain Valley Authority routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2019 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

Detected Contaminants Table

Fountain Valley Authority (PWSID CO0121300)

Inorganic Contaminants

Monitored at the Treatment Plant (entry point to the transmission system)

Contaminant	MCL	MCLG	Units	Level Detected	MCL Violation	Sample Dates	Possible Source(s) of Contamination
Barium	2	2	ppm	0.06	No	May 2019	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Chromium	100	100	ppb	1.3	No	May 2019	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride	4	4	ppm	0.49	No	May 2019	Erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate (as Nitrogen)	10	10	ppm	0.34	No	May 2019	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nickel	N/A	N/A	ppb	1.8	N/A	May 2019	Erosion of natural deposits, discharge from industries, discharge from refineries and steel mills
Selenium	50	50	ppb	6.8	No	May 2019	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	N/A	N/A	ppm	21.2	N/A	May 2019	Erosion of natural deposits

Turbidity

Continuously monitored at the Treatment Plant (entry point to the transmission system)

Contaminant	TT Requirement	Level	TT	Sample Dates	Possible Source(s) of Contamination
		Detected	Violation		
Turbidity	Maximum 1 NTU for any single measurement	Highest Single Measurement: 0.35 NTU	No	July 2019	Soil Runoff
Turbidity	In any month, at least 95% of samples must be less than 0.3NTU	Lowest Monthly percentage of samples meeting TT requirement: 99%	No	July 2019	Soil Runoff

Total Organic Carbon (Disinfection Byproducts Precursor) Removal Ratio and Finished Water

Monitored at the Treatment Plant (entry point to transmission system)

Contaminant	MCL	MCL	Units	Average	Range	MCL	Sample Dates	Possible Source(s) of Contamination
		G			Low - High	Violation		
Total Organic Carbon (TOC)	TT	N/A	N/A	1.22	1 – 1.50	No	Monthly - Running	Naturally present in the environment
	minimu						Annual Average	
	m ratio =							
	1.00							

Disinfectants

Continuously monitored at the Treatment Plant (entry point to the transmission system)

Contaminant	•		Level	MRDL Sample Dates		Possible Source(s) of Contamination
			Detected	Violation		
Chlorine	TT= No more than 4 hours with a sample below 0.2 ppm	ppm	0 samples above or below the level	No	Jan – Dec 2019	Water additive used to control microbes

WANT MORE INFORMATION

For questions concerning this report, please call Colorado Springs Utilities Laboratory Services at (719) 668-4560.

FOUNTAIN CITY OF 2020 Drinking Water Quality Report Covering Data For Calendar Year 2019

Public Water System ID: CO0121275

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact JUSTIN MOORE at 719-322-2073 with any questions or for public participation opportunities that may affect water quality. Please see the water quality data from our wholesale system(s) (either attached or included in this report) for additional information about your drinking water.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting epa_gov/ground-water-and-drinking-water.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- •Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- •Inorganic contaminants: salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- •Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.
- •Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit wqcdcompliance.com/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121275, FOUNTAIN CITY OF, or by contacting JUSTIN MOORE at 719-322-2073. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that could occur. It does not mean that the contamination has or will occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
GOLDFIELD CC - RECEIVED FROM WIDEFIELD (Surface Water-Consecutive Connection) RICE LANE CC - RECEIVED FROM WIDEFIELD (Surface Water- Consecutive Connection) MESA RIDGE CC - RECEIVED FROM WIDEFIELD (Surface Water-Consecutive Connection) PURCHSD FROM CO0121300 FVA (Surface Water-Consecutive Connection) WELL NO 2 SOUTH PARK WELL (Groundwater-Well) WELL NO 3 SHOP WELL (Groundwater-Well) WELL NO 4 DALE ST (Groundwater-Well)	Aboveground, Underground and Leaking Storage Tank Sites, Existing/Abandoned Mine Sites, Other Facilities, Commercial/Industrial/Transportation, High Intensity Residential, Low Intensity Residential, Urban Recreational Grasses, Row Crops, Pasture / Hay, Septic Systems, Road Miles

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- **Health-Based** A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory
 requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no
 known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there
 is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial
 contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- **Formal Enforcement Action (No Abbreviation)** Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- **Nephelometric Turbidity Unit (NTU)** Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- Compliance Value (No Abbreviation) Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- **Average (x-bar)** Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

• Level 2 Assessment – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

FOUNTAIN CITY OF routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2019 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

Disinfectants Sampled in the Distribution System TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm OR If sample size is less than 40 no more than 1 sample is below 0.2 ppm **Typical Sources:** Water additive used to control microbes Disinfectant **Time Period Number of Samples** TT**MRDL** Results Sample **Below Level** Violation Name Size Chlorine December, 2019 Lowest period percentage of samples 0 30 No 4.0 ppm meeting TT requirement: 100%

	Lead and Copper Sampled in the Distribution System										
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	90 th Percentile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources			
Copper	05/03/2019 to 05/10/2019	0.64	60	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Lead	10/18/2019 to 11/19/2019	6.9	60	ppb	15	4	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Copper	10/18/2019 to 11/19/2019	0.6	60	ppm	1.3	1	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Lead	05/03/2019 to 05/10/2019	6.5	60	ppb	15	3	No	Corrosion of household plumbing systems; Erosion of natural deposits			

	Disinfection Byproducts Sampled in the Distribution System											
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Total Haloacetic Acids (HAA5)	2019	26.17	0 to 52	16	ppb	60	N/A	No	Byproduct of drinking water disinfection			
Total Trihalome thanes (TTHM)	2019	48.21	3.4 to 108	16	ppb	80	N/A	No	Byproduct of drinking water disinfection			

	Radionuclides Sampled at the Entry Point to the Distribution System											
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Gross Alpha	2017	4.2	4.2 to 4.2	1	pCi/L	15	0	No	Erosion of natural deposits			
Combined Radium	2017	1.34	1.34 to 1.34	1	pCi/L	5	0	No	Erosion of natural deposits			
Combined Uranium	2017	7.2	7.2 to 7.2	1	ppb	30	0	No	Erosion of natural deposits			

	Inorganic Contaminants Sampled at the Entry Point to the Distribution System											
Contaminant	Year	Average	Range	Sample	Unit of	MCL	MCLG	MCL	Typical Sources			
Name			Low – High	Size	Measure			Violation				
Barium	2019	0.05	0.05 to 0.05	1	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits			
Fluoride	2019	1.6	1.6 to 1.6	1	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and			

	Inorganic Contaminants Sampled at the Entry Point to the Distribution System										
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources		
									aluminum factories		
Nitrate	2019	2.9	2.7 to 3.1	2	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits		
Selenium	2019	4.6	4.6 to 4.6	1	ppb	50	50	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines		

Secondary Contaminants**

**Secondary standards are <u>non-enforceable</u> guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	Secondary Standard
Sodium	2019	96	96 to 96	1	ppm	N/A

Unregulated Contaminants***

Contaminant Name	Year	Average	Range	Sample Size	Unit of Measure
			Low – High		
Bromochloroacetic acid	2019	2.45	1.35 to 3.41	4	
Bromodibromoacetic acid	2019	2.90	1.40 to 4.33	4	
Chlorodibromoacetic acid	2019	1.003	0.702 to 1.77	4	

Unregulated Contaminants***

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Dibromoacetic acid	2019	0.804	0 to 1.89	4	ppb
Dichloroacetic acid	2019	7.20	3.08 to 10.3	4	ppb
Monobromoacetic acid	2019	0.17	0 to 0.345	4	ppb
Monochloroacetic acid	2019	BDL	BDL	4	ppb
Tribromoacetic acid	2019	0.773	0 to 3.09	4	ppb
Trichloroacetic acid	2019	9.708	3.83 to 13.7	4	ppb
Bromide	2019	182	147 to 209	3	ppb
Total Organic Carbon (TOC)	2019	1250	1140 to 1340	3	ppb
Germanium	2019	BDL	BDL	2	ppb
Manganese	2019	0.206	0 to .411	2	ppb
Chlorpyrifos	2019	BDL	BDL	2	ppb
Dimethipin	2019	BDL	BDL	2	ppb
Ethroprop	2019	BDL	BDL	2	ppb
Oxyfluorfen	2019	BDL	BDL	2	ppb
Profenofos	2019	BDL	BDL	2	ppb
Tebuconazole	2019	BDL	BDL	2	ppb
Permethrin, cis & trans	2019	BDL	BDL	2	ppb
Tribufos	2019	BDL	BDL	2	ppb
Butylated hydroxyanisole	2019	BDL	BDL	2	ppb
o-Toluidine	2019	BDL	BDL	2	ppb
Quinoline	2019	BDL	BDL	2	ppb
1-Butanol	2019	BDL	BDL	2	ppb
2-Methoxyethanol	2019	BDL	BDL	2	ppb
2-Propen-1-ol	2019	BDL	BDL	2	ppb

Unregulated Contaminants***

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Alpha- Hexachlorocyclohexane	2019	BDL	BDL	2	ppb

^{***}More information about the contaminants that were included in UCMR monitoring can be found at: drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR. Learn more about the EPA UCMR at: epa.gov/dwucmr/learn-about-unregulated-contaminant-monitoring-rule or contact the Safe Drinking Water Hotline at (800) 426-4791 or epa.gov/ground-water-and-drinking-water.

Violations, Significant Deficiencies, and Formal Enforcement Actions

Non-Health-Based Violations

These violations do not usually mean that there was a problem with the water quality. If there had been, we would have notified you immediately. We missed collecting a sample (water quality is unknown), we reported the sample result after the due date, or we did not complete a report/notice by the required date.

Name	Description	Time Period					
City of Fountain	The City of Fountain samples Disinfection	1st Quarter 2020					
	Byproducts per quarter; January, April, July						
	and October. The time allowed between						
	samples according to CDPHE has been 90						
	days for the past several years. They have						
	since allowed that to be 90 days or within the						
	third month. On January 23rd 2020 DBP's						
	were collected at the 4 State selected sites;						
	7498 Fortman, 425 W. Alabama, 9745 Bar B						
	and 7644 Dobbs. Eurofins lab notified the City						
	of Fountain on February 4th 2020 that						
	"analysis was invalidated due to the method						
	524.2 instrument issues" and that recollection						
	was necessary. Due to this, the City of						
	Fountain Water Department is in violation of						
	the 90 days or within the third month. Being a						
	tier 3 violation and having to report this on the						
	Consumer Confidence Report.						
Additional Violation Information							

Additional Violation Information

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

Moving forward, to avoid little to no time to recollect samples due to "instrument issues" the City will collect DBP samples at the earliest possible date in the third month. This will allow time for the lab to collect results and notify the City if recollection is necessary, along with shipping of recollection bottles, recollection of samples, return shipping, reanalysis and submittal of results to CDPHE. Changes have been made to prevent this from happening again in the future.